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On surface-wave diffraction by a trench 
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The two-dimensional diffraction of a long surface wave by a deformation of the bottom 
is calculated through a conformal-mapping algorithm (Kreisel 1949). The result is 
applied to obtain the complex reflection coeEcient for a rectangular trench. The 
corresponding reflection coefficient for oblique incidence is obtained through a 
variational formulation. 

1. Introduction 
The two-dimensional diffraction of surface waves by a submarine trench has been 

treated by Lassiter (1972) and Lee & Ayer (1981), but they do not give results that 
are directly useful for long waves (e.g. tsunamis), which are likely to be of the greatest 
oceanographic interest. 

The long-wave problem for any bottom deformation of dimensions small compared 
with the wavelength can be solved by conformal mapping and is closely related to the 
problem of determining the incremental capacitance associated with the corresponding 
deformation of a two-dimensional, parallel-plate capacitor. This approach to diffrac- 
tion problems goes back a t  least t o  Rayleigh (1897) and Lamb (1898), and has been 
further developed by Schwinger (c .  1944 a t  the M.I.T. Radiation Laboratory; see 
Schwinger & Saxon (1968)), Kreisel (1949) and Tuck (1976). Kreisel’s result for t,he 
magnitude of the reflection coefficient of a small obstacle provides perhaps the most 
elegant basis for the present calculation; however, he omits the derivation and does 
not give the phase. (Tuck (1976) obtains both the amplitude and the phase of the 
reflection coefficient, but his results are in less compact form than that of Kreisel.) 
I sketch the derivation of Kreisel’s result in 9 2 and obtain explicit results for a rec- 
tangular trench in 6 3. 

The reflection coefficient for a wave that is obliquely incident upon a trench may be 
obtained from a slight generalization of Lassiter’s ( 1972) variational formulation, 
following Miles (1967); however, since Lassiter’s formulation is for the asymmetric 
problem (with different depths on the two sides of the trench), it proves simpler to  
alter Mei & Black’s (1969) variational formulation for diffraction by a rectangular 
obstacle. I do this in 9 4 and then take the long-wave limit to obtain a rather simple 
correction for the effect of obliquity on the reflection coefficient. 
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2. Long-wave formulation 
The gravity wave 

y = ~ ( x ,  t )  = i42{Aei(Kx-ut)), 

K tanh ~h = c+/g = K,, 

where K is determined by 

is incident, from x = - co, on a two-dimensional obstacle, y = - h + f ( x )  ( I f 1  < h), of 
finite breadth on the bottom of a laterally unbounded, inviscid ocean of ambient 
depth 12. The corresponding velocity potential may be posed in the form 

and has the asymptotic forms 

(2.7) 

in which R and T are the reflection and transmission coefficients for the obstacle and, 
here and subsequently, the alternatives are vertically ordered. 

We now assume that both the depth h and the lateral dimensions of the obstacle 
are small compared with g/v2, so that (2.2), (2.5) and (2.7) may be replaced by 

Kh = ( K m h ) *  < 1, (2.8) 

= 0 (y = O), (2.9) 

(2.10) 

The reduced boundary-value problem described by (2.4),  (2.6), (2.9) and (2.10) 
corresponds to potential flow in the two-dimensional channel - h+f < y < 0 with thc 

(2.1 1 )  

which must be equal by virtue of continuity; accordingly, we may rewrite (2.10) in 
the form 

N U(x+l)+(iCT)-'gA ( b + h <  + X  < 1 / K ) ,  (2.12) 

where the length Zis determined by comparing (2.12) with (2.10) and invoking (2.11). 
It follows from this comparison that 

R = - ~ K Z (  1 - i~Z)-l, T = ( 1  - ~ K Z ) - ' .  ( 2 . 1 3 ~ ~ )  b )  

We remark that' the approximations ( 2 . 1 3 ~ ~ ~  b )  satisfy the conservation-of-energy 
requirements = 1 and IR+TJ = 1 exactly and are valid through 0 ( ~ 2 2 2 ) ,  

whereas the cruder approximations R = - i ~ l  and T = 1 + i ~ l  are in error by O ( K ~ ~ ~ ) .  
The solution of the potential-flow problem is obtained by mapping - h +f(a) < y < 0 
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in the (x+iy)-plane on the strip -h  < 915) < 0 in the complex <-plane, where 
0 = UW(f;)  and the mapping is scaled so that dz ld5  N 1 as 6 -+ 00. It then follows 
from ( 2 . 1 1 )  that  (cf. Kreisel 1949) 

21 = (1 -$) d5, 
2/=0 

(2.14) 

where z = x + iy. 
The dimensionless parameter 21/h may be identified as the incremental electrostatic 

capacitance per unit width associated with the obstacle, qua deformation of the 
parallel-plate capacitor formed by perfect conductors a t  y = 0, - h.  It follows that 
various isoperimetric inequalities are available for its estimation (P6lya & Szego 
1951); in particular, upper and lower bounds to 1 may be obtained by replacing the 
profile of the obstacle by curves that bound it from above or below. 

It may be inferred from ( 2 . 1 3 ~ )  and Kreisel's (1949) result for a low, gently sloping 
obstacle that (2.14) has the limiting form 

21N W h  ( f f ( x ) l / h ,  If'(4l 4% (2.15) 

where S is the cross-sectional area of the obstacle and is negative for a depression. 

3. Rectangular trench 
We now calculate 1 for a rectangular trench of breadth 2 b and depth d (figure 1 a ) .  

The interior of the polygon ABCDEFGH is mapped on the half-plane $ ( w )  > 0 
(figure l b )  by 

which, in turn, is mapped on the strip - h  < 9([) < 0 (figure l c ) ,  with z N 6 as 
x - t + m , b s  

The transformations are scaled so that both z and Sincrease by ih as the pole a t  w = l/a 
is traversed from left to right. The dimensionless parameters a and k are implicitly 
determined by b l h  and d l h ;  however, i t  is expedient to regard a and k as the primary 
family parameters, as functions of which blh,  d / h  and E/h are to be determined. 

These determinations are expedited by the further transformation 

to = sn (7, k ) ,  (3.3) 
which maps Y(w) > 0 on the interior of a rectangle with vertices at 7 = k K and 
5 K +iK' (figure I d ) ;  sn is a Jacobi elliptic function of modulus k, I< is a complete 
elliptic integral of the first kind and modulus k, and K' is the complementary integral 
of modulus k' = (1 - k2)t. The notation follows Byrd &, Friedman (1954),  hereinafter 
referenced by the prefix BF, followed by the number of the appropriate entry therein. 
It also is convenient to introduce 

(3 .4a,  b )  p = sin-I (ulk), T = sn-I (a /k ,  k )  = F(p,  k), 
where F(P,  k) is an incomplete elliptic integral of the first kind, and 

s n T d n T  
C = a ( E 2 ) '  = (i-k2sin2p)itanP= c n T  ' (3.5) 

where sn T 5 sn (T, k ) ,  cn T and dn T are Jacobi elliptic functions. 
11-2 
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FIGURE 1 .  (a)  Rectangular trench in z = x + iy plane. (b)  Mapping on w-plane, as given by (3.1). 
(c )  Mapping on [-plane, as given by (3.3). ( d )  Mapping on .r-plane, as given by (3.3). 

The parameters b/h  and d/h,  as determined by integrating (3.1) between w = 0 and 
l / k  and invoking (3.3) and BF 435.04?, are given by (cf. Carter 1926) 

2 .T 
= - ( K  + i K ' )  {C-Z(P, k)} - t K ,  

7r 

( 3 . 6 ~ )  

( 3 . 6 b )  

is Jacobi's Zeta function (BF 140), E(P,  k )  and F(P,  k )  are incomplete elliptic integrals 
of the second and first kinds, respectively, and E is a complete elliptic integral of the 
second kind and modulus k .  

The parameter l /h ,  as determined by substituting (3.1)-(3.3) into (2.14), letting 
7 = t +iK',  and invoking BF 122.07, is given by 

cntdt. 
1 2  T dnTcnt-cnTddnt - = - - t , n ~ I ~  ( 
h 7 r  sn2T-sn2t 

t The Fourier scrim R, in BF 435.04 has been summed to obtain the last term in ( 3 . 6 b ) .  
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dlh 
FIGURE 2. The dimensionless parameter - Zh/bd, as calculated from (3.6) and 

for b/h  = 4, i, 1 ,  2, 4. 
(3.9) 

The integrand in (3.8) is indeterminate, but has the limiting value 4kt2nd T, a t  t = T. 
Replacing T by t, ,  invoking BF 436.03, and letting tlf T, we obtain 

1 } - -  2 n sinh (nnK’/R) h = R h  n Ksin (nT/R)  n91 = I 

T b + 1 In 1 n tn  T nd T 2 exp ( - n.nK’/K) sin2 (nnT/K) . (3.9) --- 

Numerical results calculated from (3.6) and (3.9) are plotted in figures 2 and 3 .1  
Letting k f  1 ( d / h  j, 0) in (3.6) and (3.8)) we obtain 

’ 
( k f  1). (3.10a, b, c )  

b 2  d 
- N - tanh-’ a,  
h n  

J. N. Newman (private communication) has pointed out that  my result for i - (Zh /bd)  
should be equivalent to the added-mass coefficient AJ4pbd of Flagg & Newman (1971) for a 
rectangular bump, continued for negative values of d .  Graphical interpolation between the two 
results suggests that  this is likely to  be so, but I have been unable t o  demonstrate analytical 
equi\Talence. 
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FIQURE 3. The dimensionless parameter -Z/h, as calculated from (3.6) and (3.9) (--), ( 4 . 2 6 ~ )  
and ( 4 . 3 0 ~ ~ )  (- - --), and (4.26n) and (4 .30b)  (- - -), for (a) b / h  = $, i, 1 ; ( b )  b / h  = 1, 2, 4. 

We remark that (3 .10~)  agrees with the limiting approximation (2.15) even though 
f '(2) is infinite a t  the ends of the trench; however, the approximation is satisfactory 
only for quite small d/h.  

Letting k J. 0 (d /h f  co) with /3 fixed in (3.6) and (3.8), we obtain 

( p  tan ,L? - In see p)  N -- ( k  3. O ) ,  
4 1 2  

- - tanp,  - N - tanpln--P), 
b 
h d 2 (  h n  k 77 

(3.11 a, b ,  c )  
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blh 
FIGURE 4. The dimensionless parameter -Z/h for d / h  + 1 ,  as calculated from (3.12).  

(3.12) 

which is plotted in figure 4. 

4. Oblique incidence ; variational formulation 
Waves moving obliquely with respect to the trench of figure 1 (a )  are described by 

#(x, y, z, t )  = &?{@(z, y) ei(yz-ut) 1, (4.1 ) 

where the z-axis is directed along the trench (the complex variable z occurs only in 
5 3), y is the z-component of the wavenumber (we assume y < K ) ,  (D satisfies 

a,,,+ @'vv-y2@ = 0, ( 4 4  

(Dv = K m ( D  (y = O ) ,  (4.3) 
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@ , = O  ( x = + b , - H < y < - h ) ,  (4.4a) 

CD, = 0 (4.4b) 

and H = h + d is the total depth of the trench. 
Geometric symmetry permits the scattering problem for the trench to be separated 

into symmetric and antisymmetric problems. We pose the solution for the symmetric 
problem (the basic symmetry is that of the velocity potential, which is the same as 
that of the free-surface displacement but opposite that  of the velocity $z) in the form 

(1x1 > b,y = -h;  1x1 < b,y  = - H ) ,  

0 
)X(Y)  @, = {A,e-ia(l.~l-b) + Bseia(lZI-b) 

- C' ( k 2 +  Y2)-$ exp {-- (k2+ YV (1x1 - b ) )  $,(y)/ G ( V )  $1<(7) d~ (1x1 > b ) ,  
1,. - h  

where A ,  is the amplitude of the incoming (towards the trench) waves, B, is the 
amplitude of the outgoing waves, 

(4.7) a = ( K 2 - -  Y 2 ) 4 (Y < 4 
is the x-component of the wavenumber, 

and 
$k = ( 2 / h ) ~ 1 , 1 + ( 2 k h ) - 1 s i n 2 k h ) - ~ c o s k ( k + ~ ) ,  ktankh = - K ~ ,  (4.8n, b )  

YK = (2/H)4{1+(2KH)-1sin 2KH)-*cosK(H+y), K t a n K H  = - K ~ .  (4.9a, b )  

The $, and Y K  are complete, orthonormal sets of functions in -h  < y < 0 and 
- H < y < 0, respectively, for which the eigenvalties are determined by (4.8b) and 
(4.9b) ( K  and k stand for roots of (4.9b) and (4.8b),  respectively, throughout this 
section, rather than for an elliptic integral and its modulus as in $ 3 ) .  The primed 
summation in (4.5)s is over the positive real roots of ( 4 . 8 b )  but excludes the imaginary 
root k = i ~ ,  for which (4.8a) has the equivalent form 

?jiK 5 x = (2/h)4 { 1 + ( 2 ~ h ) - l  sinh 2 ~ h } - *  cosh { ~ ( h  + 9)). (4.10) 

The summation in (4.6), is over the real roots of (4.9b) and the positive imaginary 
root if such a root exists (there is a finite range of y for which no such root exists, in 
which case the obliquely incident wave would be totally reflected a t  an increase of 
depth from h to H). The coefficients of y!rk and 'FK in these summations have been 
determined from the corresponding Fourier expansions of Us, the former of which 
also implies 

(4.11)s 



Surface-wave diffraction by  a trench 323 

It is expedient, at this point, to normalize Us and introduce the length L,? according 

(4.140, b ) ,  
to  

Us = - ia(A, - B,) us, 

the substitution of which into (4.1 l) ,  and (4.12), yields 

A ,  + B, = - ia(A, - B,) L,, 

(4.15), 

(4.16), 

Multiplying (4.16), through by u, (y ) ,  integrating over - h  < y < 0,  and invoking 
(4.15), ,we obtain the variational integral 

which is an absolute minimum with respect to variations of u,(y) about, the solut,ion 
to the integral equation (4.16),, subject to the constraint (4.15),. The constraint may 
be eliminated by dividing (4.17), through by the square of ( 4 . 1 ~ 5 ) ~  to obtain 

which is invariant under a scale transformation of us. 
The formulation of the antisymmetric problem parallels (4.5),-(4. 18),, with the 

following changes: the subscript s is replaced by a ;  the sign of the right-hand side of 
(4.5), is reversed in x < - b ;  cosh and sinh in the numerator and denominator of 
(4.6), are replaced by sinh and cosh, respectively; coth in (4. 13), is replaced by tanh. 

that the sum and difference of the reflection and 
transmission coefficients (note that each of the two incoming waves in the symmetric 
problem produces both a reflected and a transmitted wave and similarly for the anti- 
symmetric problem) are given by 

It follows from (4.5), and 

R + T = (&/A,) exp ( - 2iab) E exp (2i0,), 

R - T = (&/A, )  exp ( - 2iab) E exp (2i&), 

(4.19)s 

(4.191, 

0, = - ab +tan-' aLs (4.20)s 
where 

follows from (4.14b), and similarly for 0,. It follows from (4.19), and (4.18), that  

R = I{ exp (2i0,) + exp (2i&)}, ( 4 . 2 1 ~ ~ )  

T = 1 {  exp (2i0,) - exp ( 2i0,)). (4.21b) 

We turn now to the long-wave limit. Letting K, h J. 0 with H / h  and blh = O(1) in 
(4.8)-(4.10) and substituting the resulting approximations, 

k = i ( ~ ~ / h ) h ,  nn/h (n  = 1,2,  ...), y?k = h - h ,  ( - ) "  (2/h)4 cos ( n n y l h ) ,  (4.22) 

The inverse length l/LB is a degenerate form of the scattering matrix in the corresponding 
formulation of asyrninetric scattering problems (RIiles 1967).  
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and similarly for K and YK,  into (4.13)s, a and (4.18)s, a, we obtain 

(4.23a, b )  

where 

(4.24) 

Substituting (4.23a, b)  into (4.20),, a,  invoking (2.8), (4.7) and (4.21a, b) ,  and re- 
taining only the dominant (as K ,  h $ 0 )  terms, we obtain 

U s  = n+ds+O(K,h), Oa = i+aZa+O(K,h), (4.25a, 6 )  

la  = -bdH-'+ hA, (4.26a, b )  

( 4 . 2 7 ~ ~ )  

( 4.27 b)  

Error factors of 1 + O(K,  h) are implicit in the exponents in (4.27a, b) .  The correspond- 
ing first-order approximations are 

where 
I s  = - ( ~ / a ) ~  (bdlh), 

= l ( e2W 2 - e 2 M )  = - ieia(&,+ldsin a(la - la), 

T = l ( e 2 i 4  2 + e 2 i a L )  = efd&+la) cos a(la - I s ) .  

R = -ia(Za-Zs), T = 1 +ia(Za+ls). (4.28a, b )  

Note, however, that  (4.27) imply IT12 = 1 exactly, whereas (4.28) do so only 
approximately . 

It is evident from (4.24) and the fact that  ua may be expanded in the complete set 
of functions cos (nnylh) (n = 0 , 1 , 2 ,  . ..) that  A is independent of y .  It follows that l a ,  
as given by (4.26b), also is independent of y and therefore must be equivalent to 1, 
as defined in $ 2  and calculated in $ 3 ;  accordingly, (4.27) provides the extension of 
(2.13) to oblique incidence through O ( ~ ~ l 2 ) .  We remark that R = 0 a t  those angles 
of incidence for which ( ~ / a ) ~  = - hl/bd and that these angles are & 45" for a very 
shallow trench (ti < h).  

Returning to (4.24), we consider the variational approximations implied by the 
truncated Fourier expansions 

uo = 1, u1 = l+Ccos(ny/h) (4.29a, b )  

(recall that A is invariant under a scale transformation of ua, so that the dominant 
term in the Fourier expansion may be taken as unity). Substituting (4.29a, b )  into 
(4.24) and minimizing A to determine C, we obtain 

A, = So, ~41 = So - 2nS;( 1 + 2nS2)-l, 
respectively, where 

(4.30a, b )  

(m = 0 , 1 , 2 ) .  
-7n tanh (nnb/H)  sin2 (nnh/H) 

(n7O3 
(4.31) 
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Note that A, < A,,, in accordance with the variational principle. The corresponding 
approximations to l /h  are plotted in figure 3. It is evident that the variational approxi- 
mations are quite accurate and offer the advantage of displaying the explicit depen- 
dence of Z/h on b/h and d/h .  

This work was partially supported by the Physical Oceanography Division, National 
Science Foundation, NSF Grant OCE 77-24005, and by a contract with the Office of 
Naval Research. 
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